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Summary We are concerned with efficient numerical simulation
of the radiative transfer equations. To this end, we follow the Well-
Balanced approach’s canvas and reformulate the relaxation term as
a nonconservative product regularized by steady-state curves while
keeping the velocity variable continuous. These steady-state equa-
tions are of Fredholm type. The resulting upwind schemes are proved
to be stable under a reasonable parabolic CFL condition of the type
∆t ≤ O(∆x2) among other desirable properties. Some numerical re-
sults demonstrate the realizability and the efficiency of this process.
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1 Introduction

Radiative transfer problems are encountered in wide areas of appli-
cation, like for instance asymptotics of Schrödinger equations with
a random potential whose characteristic scale matches the one of
the wave function, [4,13,15,36]. It is also used in climate evolution
modeling, [38,40], in astrophysics, since the early works of Chan-
drasekhar, [12], or for neutron transport phenomena, [11,7,35]. In

? Work partially supported by EEC network #HPRN-CT-2002-00282.
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a three-dimensional nonaccretive setting with uniform optical thick-
ness, it reads

∂tf + ξ · ∇f =
1
4π

∫

S2
fdξ − f, x ∈ R3, t > 0. (1)

The unknown is the nonegative specific radiation intensity f(t,x, ξ)
which depends on time t, position x and velocity ξ. It should also
depend on its frequency usually denoted by ν > 0; however since
no emission source on the right-hand side of (1) will be taken into
account before §4, we discard it. At thermal equilibrium, a canoni-
cal example for such a term would be Planck’s blackbody radiation
function, in standard notation

Bν(T ) =
2~ν3

c2
(
e
~ν
kT − 1

) ,

with T > 0 the temperature, c the speed of light and ~, k stand-
ing respectively for Planck’s and Boltzmann’s constants. The one-
dimensional Goldstein-Taylor model studied in [21] appears to match
the so-called ”two-stream approximation” of (1), see [38,40].

It is obvious that a direct numerical approach to (1) is very ex-
pensive because it requires the discretization of a seven-dimensional
space. Hence it has been observed that in certain situations, it is suf-
ficient to compute its diffusive (so-called Rosseland) approximation
for which one gets rid of the velocity variable ξ. The passage from
one to the other is done via a rescaling of space and time, t → t/ε2,
x → x/ε; formal computations have been justified in e.g. [5,33].

The scope of this text is the efficient numerical simulation of the
forthcoming one-dimensional Cauchy problem whose unknown is now
a general nonegative kinetic density f(t, x, ξ), x ∈ R, t > 0,

ε∂tf + ξ∂xf =
1
ε

(
1
2

∫ 1

−1
f.dξ − f

)
, ξ ∈ [−1, 1], (2)

together with an initial datum 0 ≤ f0(x, ξ). The parameter ε ≥ 0 is
the Knudsen number; for ε ' 1, we are in the so-called rarefied regime
whereas ε → 0 forces the energy density f to be fully scattered in an
isotropic way. In this case, the asymptotic regime for the macroscopic
density %(t, x) = 1

2

∫ 1
−1 f(t, x, ξ).dξ is of the diffusive type,

∂t%− 1
3
∂xx% = 0, x ∈ R, t > 0. (3)

Several authors already proposed numerical treatments of (2), see
e.g. [31,18,29,30,34] and [7,14] for an entropy closure approximation.
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Recently, the so-called “Asymptotic-Preserving” (AP) schemes have
been singled out because of their ability to remain stable as ε → 0
within a fixed computational discretization and to be fully consistent
with (3), see [26–28,8].

The main drawback of these schemes at the time being lies in the
difficulties one encounters when trying to establish rigorously their
properties. This is one of the reasons why the authors decided to
exploit the “Well-Balanced” approach after [23] (see also [19,1,6])
to treat this class of hyperbolic-parabolic relaxation problems. It has
already been successful in the case of discrete velocity models, see [21,
22]. However, an extension towards problems involving a continuous
distribution of the velocity variable has never been carried out before.

Therefore, as a first attempt, we propose here to focus on the
simple model (2). Following the ideas from [19–22], we first recast
this equation in the framework of nonconservative problems, [32,1],
while localizing its right-hand side on a discrete lattice by means of
Dirac masses δ(.). More precisely, a positive parameter h > 0 being
given, we plan to derive in §2 a Godunov type scheme based on the
following singular equation inspired by (2) where xj = jh,

ε∂tf
h + ξ∂xfh =

1
ε

∑

j∈Z
h

(
1
2

∫ 1

−1
fh.dξ − f

)
δ(x− xj− 1

2
). (4)

Here, fh(t, x, ξ) stands for an auxiliary unknown to be used as a
building block in a Godunov scheme, [16]. Such a formulation is gen-
erally unstable for discontinuous fh(t, ., ξ); our treatment will follow
the general theory of nonconservative products, [32]. We solve the
Riemann problem for (4) in §2.1 in order to produce the numerical
scheme which turns out to be endowed with the WB property, see
(18), in §2.2. Along this presentation, we shall also consider briefly
the nonlinear version of (2) namely,

ε∂tf + ξ∂xf =
K(%)

ε
(%− f) , % =

1
2

∫ 1

−1
f.dξ, ξ ∈ [−1, 1], (5)

with K a continuous function satisfying K(%) > 0 if % > 0. Its Rosse-
land approximation is given by the diffusion problem for x ∈ R, t > 0:

∂t%− 1
3
∂xxD(%) = 0, D′(%) =

1
K(%)

. (6)

Since this nonlinear case can be tackled in a quite similar way com-
pared to (2), we also include it: see Remarks 1 and 3. Later, §3 is
devoted to a complete convergence analysis of a simpler model, see
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(34), in the diffusive limit ε → 0. It is deduced from (18) by neglect-
ing some terms of the order of ε, cf. §3.1. Finally, §4 is concerned
with numerical experiments and some technical proofs (Theorem 1,
Lemmas 5, 6, 7) are presented in an Appendix to improve readability.

2 Nonconservative reformulation and WB discretization

2.1 Steady-states and generalized jump relations

The Cauchy problem for (4) is unstable in a class of discontinuous
functions, as explained in [32]. The first and basic step is therefore
to give a precise mathematical meaning to the ambiguous products
of the “Heaviside × Dirac” type appearing inside (4). This shall be
done according to the theory presented in [1,19,22], that is to say by
considering the steady-state equation related to (2). We call f̂(x, ξ)
any solution with ξ 6= 0 of:

εξ∂xf̂ =
1
2

∫ 1

−1
f̂ .dξ − f̂ , ξ ∈ [−1, 1], x ∈ [0, h]. (7)

Boundary conditions are to be specified later. We now split this equa-
tion into two for each positive u and negative v part of the kinetic
density f . More precisely, we consider u(t, x, ω) = f(t, x, ω) and
v(t, x, ω) = f(t, x,−ω) for ω ∈ [0, 1]. Thus the stationary relation
(7) rewrites for û(x, ω), v̂(x, ω):

εω∂xû =
1
2

∫ 1

0
(û + v̂).dω − û,

εω∂xv̂ = v̂ − 1
2

∫ 1

0
(û + v̂).dω,





ω ∈]0, 1], x ∈ [0, h]. (8)

We complete this system with the following boundary conditions:

∀ω ∈]0, 1]; û(0, ω) = uL(ω), v̂(h, ω) = vR(ω). (9)

The main objective of this paragraph is to derive a consistent approx-
imation of the integral curves of (8)–(9) for all ω ∈]0, 1] and h ∈ R+.
There is an important conservation law associated to (8), namely,

∂x

(∫ 1

0
ω(û− v̂).dω

)
≡ 0. (10)

Hence we look for an approximation of (8) which could be solved
exactly while keeping this property. From e.g. [24], we know that a
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simple Euler discretization of (8) won’t preserve (10); however, the
“mid-point rule” is more accurate.

Let us consider the Fredholm equations obtained by discretizing
this way the system (8); the unknowns ũ(ω), ṽ(ω) stand for an ap-
proximation of û(h, ω), v̂(0, ω) respectively for all ω ∈ [0, 1],

2εω

h
(ũ− uL)(ω) =

1
2

∫ 1

0
(uL + ṽ + ũ + vR).dω − (uL + ũ)(ω),

2εω

h
(ṽ − vR)(ω) =

1
2

∫ 1

0
(uL + ṽ + ũ + vR).dω − (ṽ + vR)(ω),

(11)

In order to check consistency with (10), we integrate (11) in ω ∈ [0, 1].
What we have in mind is to establish that for the chosen discretization
(11), there holds:

∫ 1

0
ω(uL − ṽ)(ω).dω =

∫ 1

0
ω(ũ− vR)(ω).dω.

Hence we compute the value of an auxiliary quantity I for which a
simplification occurs:

I =
1
2

∫ 1

0
(uL + ṽ + ũ + vR).dω −

∫ 1

0
(uL + ũ).dω

=
∫ 1

0
(ṽ + vR).dω − 1

2

∫ 1

0
(uL + ṽ + ũ + vR).dω

=
1
2

∫ 1

0
(ṽ + vR)− (uL + ũ).dω.

It remains to plug that into (11) and integrate in ω to end up with

∫ 1

0
ω(ũ− vR)(ω).dω =

hI
2ε

+
∫ 1

0
ω(uL − vR).dω,

∫ 1

0
ω(uL − ṽ)(ω).dω =

hI
2ε

+
∫ 1

0
ω(uL − vR).dω,

(12)

which clearly is a numerical formulation of (10). Of course, if ε is
replaced by a variable optical thickness ε/σ(x) in (7), then (10) reads

σ(x)−1∂x

(∫ 1

0
ω(û− v̂).dω

)
≡ 0,

and (11) should be amended accordingly; see §4.2.
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Lemma 1 Let û(x, ω) and v̂(x, ω) solve (8) with u(0, ω) = uL(ω) and
v̂(h, ω) = vR(ω); then their approximations produced by (11) read:

ũ(ω) = uL(ω)− 2h

h + 2εω

(
uL(ω)− 1

2

∫ 1

0
uL + vR(s).ds

)
,

ṽ(ω) = vR(ω)− 2h

h + 2εω

(
vR(ω)− 1

2

∫ 1

0
uL + vR(s).ds

)
,

(13)

where we defined for ω ∈ [0, 1], ε > 0:

∫ 1

0
u(s).ds =

(∫ 1

0
aε(ω).dω

)−1 ∫ 1

0
aε(ω)u(ω).dω, aε(ω) =

2εω

2εω + h
.

Proof Let us set u∗(ω) = ũ(ω) + uL(ω) and v∗(ω) = ṽ(ω) + vR(ω).
Then from the equations (11) we obtain





h + 2εω

h
u∗(ω) =

1
2

∫ 1

0
(u∗ + v∗)(ω′).dω′ +

4εω

h
uL(ω),

h + 2εω

h
v∗(ω) =

1
2

∫ 1

0
(u∗ + v∗)(ω′).dω′ +

4εω

h
vR(ω),

(14)

which gives at once the values of u∗(ω) and v∗(ω) in terms of their
mean, uL(ω) and vR(ω), respectively. Hence, integrating on ω, and
setting aε(ω) = 2εω

2εω+h as announced, one obtains

1
2

∫ 1

0
(u∗ + v∗)(ω).dω =

(∫ 1

0
aε(ω).dω

)−1 ∫ 1

0
aε(ω)(uL + vR)(ω).dω.

(15)
Substituting into (14) leads easily to (13).

Remark 1 The nonlinear case (5) can be processed the same way be-
cause a straightforward modification of (11) still guarantees the con-
servation law (10). Thus one follows exactly the same lines to end
up with formula (15), where now aε

K(ω) = hK(%)
hK(%)+2εω inside which

% = 1
2

∫ 1
0 uL + vR(s).ds. We can produce with a fixed point algorithm:





ũ(ω) = uL(ω)− 2hK(%)
hK(%) + 2εω

(uL(ω)− %) ,

ṽ(ω) = vR(ω)− 2hK(%)
hK(%) + 2εω

(vR(ω)− %) .
(16)

Then we can reasonably choose to exploit the relations (13) in
order to give a rigorous meaning to the measure source terms inside
(4) within the theory of distributions. More precisely, let us fix some
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value ω ∈]0, 1] and consider the Riemann problem for (4) with initial
states (uL, vL) for x < 0, (uR, vR) for x > 0; its solution is given by





(uL, vL) for x < −ωt,
(uL, ṽ) for −ωt < x < 0,
(ũ, vR) for 0 < x < ωt,
(uR, vR) for x > ωt.

(17)

At this level, one can notice the strong analogy between this Riemann
structure (17) and the previous ones encountered within the study of
discrete velocities models, see [21,22].

2.2 An explicit WB Godunov scheme for rarefied regimes: ε À h

Formula (17) is enough to apply the ideas of Godunov [16] in order to
derive a finite-difference scheme. To this end, we define a Cartesian
computational grid with h > 0, ∆t > 0 standing respectively for the
space and time steps. The initial data u0(x, ω), v0(x, ω) is discretized
the following way:

∀j ∈ Z, uj,0(ω) = u0(jh, ω), vj,0(ω) = v0(jh, ω).

Hence for ∆t small enough, one can update the numerical approxi-
mations just resolving Riemann problems for (4) whose solutions are
given by (17)–(13) and using Stokes’ theorem. The numerical process
derived this way reads for j ∈ Z, n ∈ N:





uj,n+1(ω) = uj,n(ω)− ω∆t

εh
(uj,n(ω)− uj−1,n(ω))

− 2ω∆t

ε(h + 2εω)

(
uj−1,n(ω)Θω

(
h

2ε

)
− 1

2

∫ 1

h/2ε
uj−1,n + vj,n(s).ds

)
,

vj,n+1(ω) = vj,n(ω) +
ω∆t

εh
(vj+1,n(ω)− vj,n(ω))

− 2ω∆t

ε(h + 2εω)

(
vj+1,n(ω)Θω

(
h

2ε

)
− 1

2

∫ 1

h/2ε
uj,n + vj+1,n(s).ds

)
.

(18)
The interval of integration has been slightly modified for reasons
which will become clear within the proof of Lemma 2. In (18) we
used the following function:

Θω (y) = 1 if y ≤ ω; Θω (y) =
ω

y
if y > ω.
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It is clear that it is nonnegative, continuous and bounded by one.
Another elementary but fundamental observation is:

2ω∆t

ε(h + 2εω)
=

∆t

ε2
aε(ω); 0 ≤ aε(ω) =

1
1 + h/2εω

. (19)

This scheme can be shown to be endowed with very strong properties
in the so-called rarefied regime which corresponds to the case h ¿ ε.
Let us emphasize its consistency with the original problem (1); the
upwinding of the source term ensures that steady states of the form
(11) satisfying (10) will be preserved whatever the value of h > 0
under the CFL condition ∆t ≤ εh.

Lemma 2 Assume the CFL condition ∆t ≤ εh with ε > 0 and
0 ≤ f0(x, ξ) ∈ L∞([−1, 1];L1(R)); then the numerical approxima-
tions produced by (18) are nonnegative and satisfy for all n ∈ N,

∑

j∈Z
h

∫ 1

h/2ε
|uj,n(ω)|+ |vj,n(ω)|.dω ≤

∫ 1

−1
‖f0(., ξ)‖L1(R).dξ. (20)

Proof We have in mind to derive convexity inequalities; the equation
on uj,n+1 in (18) implies:

|uj,n+1(ω)| ≤ |uj,n(ω)|
(

1− ω∆t

εh

)

+|uj−1,n(ω)|
(

ω∆t

εh
− 2ω∆t

ε(2εω + h)
Θω

(
h

2ε

))

+
ω∆t

ε(2εω + h)

∫ 1

h/2ε
|uj−1,n|+ |vj,n|(s).ds.

(21)

We notice that under the prescribed CFL condition, the coefficient of
|uj,n(ω)| is nonnegative. Likewise, the nonnegativity of the coefficient
of |uj−1,n(ω)| follows from the definition of Θω. The equation on
vj,n+1(ω) being treated the same way, it remains to integrate in ω ∈
[h/2ε, 1], to use (19) and to sum on j ∈ Z in order to derive

∑

j∈Z
h

∫ 1

h/2ε
|uj,n+1|+ |vj,n+1|.dω ≤

∑

j∈Z
h

∫ 1

h/2ε
|uj,n|+ |vj,n|.dω

+
∆t

ε2

∑

j∈Z
h

{∫ 1

h/2ε

(
aε(ω)− 2εω

h + 2εω

)
(|uj,n|+ |vj,n|).dω

}
.

Hence we obtain (20) from the definition of aε(ω) in Lemma 1. The
consistency comes from (19) since 2ω∆t

ε(h+2εω) = ∆t
ε2

1
1+h/2εω when Θω =

1. We notice further that Θ 6= 1 on the interval ω ∈ [0, h/2ε] which
Lebesgue measure shrinks to zero as h → 0, ε > 0.
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Other bounds in Lp(R), 1 < p ≤ +∞ can be derived the same
way. In the nonlinear case (5), one has to exclude the critical interval
ω < h/2ε‖K(%0)‖L∞(R), %0(x) = 1

2

∫ 1
−1 f0(x, ξ).dξ. This is related to

resonance problems for nonconservative balance laws, see [1,2,25] for
instance, and also to the stiffness limit of the approximation (11).
Other choices exist for Θω; for instance, we may have taken the in-
dicator function 1h≤2εω. The basic requirements are both to ensure
nonnegativity for the incremental coefficients in (18) and consistency
as h vanishes. In practice, the ω variable is discretized; the simplest
way is then to exclude the velocities inside the critical interval.

For a given ε > 0 fixed, we define the piecewise constant functions,

uh(t, x, ω) = uj,n(ω), vh(t, x, ω) = vj,n(ω), ω ∈ [0, 1], (22)

for x ∈ [(j − 1
2)∆x, (j + 1

2)∆x[ and t ∈ [n∆t, (n + 1)∆t[.

Theorem 1 Assume the CFL condition ∆t ≤ εh with ε > 0 and
0 ≤ f0(x, ξ) ∈ L∞([−1, 1];L1 ∩ BV (R)); then, as h → 0, uh and vh

remain bounded in L∞([−1, 1];BVloc(R+∗ ×R)) and converge towards
the weak solution of (2), f(t = 0, ., .) = f0.

The proof of this result has been forwarded to the Appendix.

Remark 2 Another way is to consider directly the system (8) while
“freezing” the integral term in such a way (10) or its discrete version
(12) can be preserved. Indeed, such an alternative approximation
leads to an explicitly integrable system whose solutions read:

ũ(ω) = uL(ω)− (1− e−h/εω)
(

uL(ω)− 1
2

∫ 1

0

˜uL + vR(s).ds

)
,

ṽ(ω) = vR(ω)− (1− e−h/εω)
(

vR(ω)− 1
2

∫ 1

0

˜uL + vR(s).ds

)
.

(23)
The integrals are defined as in Lemma 1, but with a different function
a which reads ãε(ω) = ω(1− e−h/εω). With these values, an analogue
of Lemma 2 holds in the whole interval ω ∈ [0, 1] since the modified
scheme yields the following convexity inequality:

|uj,n+1(ω)| ≤ |uj,n(ω)|
(

1− ω∆t

εh

)
+ |uj−1,n(ω)|ω∆t

εh
e−h/εω

+
ω∆t

2εh
(1− e−h/εω)

∫ 1

0

(
˜|uj−1,n|+ |̃vj,n|

)
(s).ds.

However, it is not completely clear how to extend such a discretization
so as to handle the diffusive scaling efficiently.
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In any case, both schemes (23) and (18) ask for a discretization
of the velocity variable ω in order to update the kinetic densities
un

j (ω), vn
j (ω) and the average quantities have to be computed in an

appropriate way (the usual choice is Gaussian quadrature rule, see
e.g. [28]). In sharp contrast, we shall see that in the diffusive regime
ε ¿ h, it is possible to avoid this. Roughly speaking, this comes from
the intuitive fact that if a scheme remains stable for small values of ε,
then the values of un

j (ω), vn
j (ω) must be very close to the Maxwellian

distribution, which in the present case is independent of ω.

2.3 First considerations on the diffusive regime: ε ¿ h

Following [21,22], we rewrite the values (13) splitting between a
Maxwellian and a diffusive term. This can be done in several ways;
the natural one reads

ũ(ω) = uL(ω)− h

2εω + h

(
uL(ω)−

∫ 1

0
vR(s).ds

)

− h

2εω + h

(
uL(ω)−

∫ 1

0
uL(s).ds

)

=
∫ 1

0
vR(s).ds− 2εω

2εω + h

(∫ 1

0
vR(s).ds− uL(ω)

)

+
h

2εω + h

(∫ 1

0
uL(s).ds− uL(ω)

)
,

(24)

and leads to the following scheme if the last (Maxwellian) term is
neglected: (compare with (18))




uj,n+1(ω) +
ω∆t

εh

(
uj,n+1(ω)−

∫ 1

0
vj,n+1(s).ds

)

= uj,n(ω)− 2ω2∆t

h(h + 2εω)

(∫ 1

0
vj,n(s).ds− uj−1,n(ω)

)
,

vj,n+1(ω) +
ω∆t

εh

(
vj,n+1(ω)−

∫ 1

0
uj,n+1(s).ds

)

= vj,n(ω)− 2ω2∆t

h(h + 2εω)

(∫ 1

0
uj,n(s).ds− vj+1,n(ω)

)
.

(25)
Observe once again that because of the property (19), there holds

∫ 1

0

ω∆t

εh

h

2εω + h

(∫ 1

0
uL(s).ds− uL(ω)

)
.dω = 0,

which means that the neglected term is of zero average. We also com-
ment on the fact that, taking advantage of the linear convection in
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(4), we chosed as in [21,22] to treat implicitly the stiff terms divided
by ε. This is not a drawback since the equations of (25) can be in-
verted analytically as we shall see in the sequel.

We introduce now a bit of notation as follows:

Γ u
j,n(ω) = uj,n(ω)− 2ω2∆t

h(h+2εω)

(∫ 1
0 vj,n(s).ds− uj−1,n(ω)

)
,

Γ v
j,n(ω) = vj,n(ω)− 2ω2∆t

h(h+2εω)

(∫ 1
0 uj,n(s).ds− vj+1,n(ω)

)
.

(26)

We notice another important property of aε, namely,

aε(ω)∫ 1
0 aε(ω′).dω′

= 2ω + o(
ε

h
). (27)

Hence, up to an error of the order of ε, one can integrate (25) in ω
and then is led to invert the resulting linear 2×2 system of equations
which yields the analytic expression of the average values of uj,n+1(ω)
and vj,n+1(ω):




uj,n+1(ω) +
∆t

2εh

(
2ωuj,n+1(ω)− 2ω

∫ 1

0
2ω′vj,n+1.dω′

)
= Γ u

j,n(ω),

vj,n+1(ω) +
∆t

2εh

(
2ωvj,n+1(ω)− 2ω

∫ 1

0
2ω′uj,n+1.dω′

)
= Γ v

j,n(ω).

(28)
This system rewrites:




∫ 1

0
2ωuj,n+1.dω − Zε

∫ 1

0
2ωvj,n+1.dω =

∫ 1

0

2ωεh

εh + ω∆t
Γ u

j,n(ω).dω,
∫ 1

0
2ωvj,n+1.dω − Zε

∫ 1

0
2ωuj,n+1.dω =

∫ 1

0

2ωεh

εh + ω∆t
Γ v

j,n(ω).dω,

with Zε =
∫ 1

0

2ω2∆t

εh + ω∆t
.dω.

(29)
At this point, one sees that the computation of the implicit av-
erages asks for involved quantities on the right-hand side of the
type

∫ 1
0

2ωεh
εh+ω∆tuj,n(ω).dω. However, in this diffusive regime, our main

point is to compute %j,n, which satisfies the following simple equation:

%j,n+1 =
1
2

∫ 1

0
Γ u

j,n(ω) + Γ v
j,n(ω).dω, n ∈ N. (30)

Hence the expensive averages cancel when integrating and adding
the scheme (28); it sounds therefore interesting to seek a simpler
version of (29) being endowed with a correct asymptotic behaviour
as ε → 0. A natural way to get such a simplified scheme is to use
simpler expressions in the left-hand side’s brackets of formula (28).
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2.4 The link with the Goldstein-Taylor model

A choice which gives this simplification makes us go from (13) to

ũ(ω) = vR(ω) +
2εω

2εω + h

(
uL(ω)− vR(ω)

)

+
h

h + 2εω

(∫ 1

0
uL + vR(s).ds− (uL + vR)(ω)

)
.

One could choose to neglect the last Maxwellian term which is of
zero average (always for the same reason) and this leads to the very
simple family of schemes which are indexed by the ω variable:





uj,n+1(ω) +
ω∆t

εh

(
uj,n+1(ω)− vj,n+1(ω)

)

= uj,n(ω)− 2ω2∆t

h(h + 2εω)

(
vj,n(ω)− uj−1,n(ω)

)
,

vj,n+1(ω) +
ω∆t

εh

(
vj,n+1(ω)− uj,n+1(ω)

)

= vj,n(ω)− 2ω2∆t

h(h + 2εω)

(
uj,n(ω)− vj+1,n(ω)

)
.

(31)

Of course, in the case ω ≡ 1, one gets the “two-stream approxima-
tion” of the radiative transfer equation, that is to say the Goldstein-
Taylor model, [17,37]. We notice also that since we neglected the
Maxwellian terms inside the decomposition of ũ(ω), there is no cou-
pling in ω ∈ [0, 1] and what we obtain is but a collection of linear
schemes of the type already studied in [21]. Thus we do not repeat
all the analysis and we only state the final result:

Lemma 3 Assume 0 ≤ f0 ∈ L∞([−1, 1];L1(R)) is initial data for
(2). Then under the CFL condition 2∆t ≤ 3h2 there holds for all
t > 0, ω ∈ [0, 1] and ε → 0:

∑

j∈Z
h
(
|uj,n(ω)|+ |vj,n(ω)|

)
≤ ‖u0(., ω)‖L1(R) + ‖v0(., ω)‖L1(R).

and the scheme (31) is positivity preserving. In the case x 7→ f0(x, ω) ∈
BV (R), one has also:

∑

j∈Z
h|uj,n−vj,n|(ω) ≤ ε

(
TVx(u0)+TVx(v0)

)
+‖u0(., ω)−v0(., ω)‖L1(R)

where TVx stands for the total variation in the space variable.
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All the estimates are exactly the same than those in [21]. The only
change comes from the consistency with (3) as ε → 0 which is the
AP property. Then one observes that each Maxwellian estimate gives
that (uj,n − vj,n)(ω) is of the order of ε in L1(R). Hence, summing
the equations in (31) gives only:

uj,n+1(ω) + vj,n+1(ω) = uj,n(ω) + vj,n(ω)

+
2ω2∆t

h(h + 2εω)

(
vj+1,n(ω)− uj,n(ω)− vj,n(ω) + uj−1,n(ω)

)
.

And this doesn’t lead to (3) because there is still a dependence of
uj,n, vj,n in ω; the relaxation estimate in Lemma 3 is too weak. As

a fix, the term h
h+2εω

(∫ 1
0 vR(s).ds− vR(ω)

)
could be included inside

(31), but the resulting scheme would be computationally expensive.

3 Convergence of a simple conservative AP scheme

3.1 Conservative Asymptotic-Preserving schemes

A third way to rewrite (13) is given by:

ũ(ω) =
∫ 1

0
vR(s).ds− 2εω

h + 2εω

∫ 1

0
vR − uL(s).ds

+
h− 2εω

h + 2εω

(∫ 1

0
uL(s).ds− uL(ω)

)
.

(32)

The main difference between (32) and (24) relies in the diffusive part,
which is now entirely given by mean values. We notice that neglecting
the last term in this expression is hopefully about to generate an error
of order ε, the Maxwellian gap, on %j,n because there holds (thanks
again to (19)):

∫ 1

0

∆tω

εh
(1− 2aε(ω))

(∫ 1

0
uL(s).ds− uL(ω)

)
.dω =

−
∫ 1

0

2∆tω2

h(h + 2εω)

(∫ 1

0
uL(s).ds− uL(ω)

)
.dω = O(

ε∆t

h2
).

Hence the important point is to ensure that the relaxation mecha-
nism is kept strong enough despite these simplifications in order to
maintain the errors on % of order ε; so far we have moved from (13)
to:

ũ(ω) =
∫ 1

0
vR(s).ds− 2εω

2εω + h

∫ 1

0
vR − uL(s).ds,

ṽ(ω) =
∫ 1

0
uL(s).ds− 2εω

2εω + h

∫ 1

0
uL − vR(s).ds.
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Inserting these values ũ(ω), ṽ(ω) leads to the following scheme





uj,n+1(ω) +
∆t

2εh

(
2ωuj,n+1(ω)− 2ω

∫ 1

0
vj,n+1(s).ds

)

= uj,n(ω)− 2ω2∆t

h(h + 2εω)

∫ 1

0
vj,n − uj−1,n(s).ds,

vj,n+1(ω) +
∆t

2εh

(
2ωvj,n+1(ω)− 2ω

∫ 1

0
uj,n+1(s).ds

)

= vj,n(ω)− 2ω2∆t

h(h + 2εω)

∫ 1

0
uj,n − vj+1,n(s).ds.

(33)

We observe that this scheme differs from (28) mainly by the form of
its right-hand side. However, it keeps on involving intricate implicit
average quantities on the left-hand side. Thus we choose to replace
them by simpler ones; namely, we define (compare with (26)):

Γ̂ u
j,n(ω) = uj,n(ω)− 2ω2∆t

h(h + 2εω)

∫ 1

0
vj,n − uj−1,n(ω′).dω′,

Γ̂ v
j,n(ω) = vj,n(ω)− 2ω2∆t

h(h + 2εω)

∫ 1

0
uj,n − vj+1,n(ω′).dω′.

And we pass from (28) to the revised scheme where the diffusive
terms are treated in a simple but conservative way:





uj,n+1(ω) +
∆t

2εh

(
uj,n+1(ω)−

∫ 1

0
vj,n+1(ω′).dω′

)

= uj,n(ω)− 2ω2∆t

h(h + 2εω)

∫ 1

0
vj,n(ω′)− uj−1,n(ω′).dω′,

vj,n+1(ω) +
∆t

2εh

(
vj,n+1(ω)−

∫ 1

0
uj,n+1(ω′).dω′

)

= vj,n(ω)− 2ω2∆t

h(h + 2εω)

∫ 1

0
uj,n(ω′)− vj+1,n(ω′).dω′.

(34)

This is an approximation which is valid for kinetic densities having
weak dependence in ω since

∫ 1
0 2ω.dω = 1 and which yields the fol-

lowing relation (compare with (30)) :

%j,n+1 =
1
2

∫ 1

0
Γ̂ u

j,n(ω) + Γ̂ v
j,n(ω).dω, n ∈ N.
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Finally we pass from (25)–(29) to a simpler linear system obtained
by integrating (34) in ω:





∫ 1

0
uj,n+1.dω −W ε

∫ 1

0
vj,n+1.dω =

εh

εh + ∆t

∫ 1

0
Γ̂ u

j,n(ω).dω,
∫ 1

0
vj,n+1.dω −W ε

∫ 1

0
uj,n+1.dω =

εh

εh + ∆t

∫ 1

0
Γ̂ v

j,n(ω).dω,

with W ε =
∆t

2εh + ∆t
= 1− 2εh

2εh + ∆t
.

(35)

Moreover, it can be easily shown that (cf. Appendix)

|Zε −W ε| = 2εh∆t

∣∣∣∣
∫ 1

0

ω(2ω − 1).dω

(2εh + ∆t)(εh + ω∆t)

∣∣∣∣ = O(ε/h), (36)

assuming that ∆t = O(h2) and both (29) and (35) are invertible.
The main point of such a discretization is that it enforces the so-
called ”Asymptotic-Preserving” (AP) property. If one assumes that
the data is locked on the Maxwellian distribution as ε → 0, that is
to say u and v independent of ω, then (34) reduces to an explicit
discretization of (3) when integrated against ω ∈ [0, 1].

3.2 Positivity-preserving property

Apart from the constant velocity ω̄ = 1
2 on the left-hand side, (34)

differs from (25) because of the presence of a monotone numerical
flux-function on its right-hand side,

F (ω;U ,V) =
2ω2

h + 2εω
(U − V), ∂UF ≥ 0, ∂VF ≤ 0, (37)

and F (ω; 0, 0) = 0 with the notations:

U =
∫ 1

0
u(ω′).dω′, V =

∫ 1

0
v(ω′).dω′.

Remark 3 In the nonlinear case (5), one is led to define

F̃ (ω;U ,V) =
2ω2

hK(%) + 2εω
(U − V), % =

1
2
(U + V), (38)

and the monotonicity is ensured if 2K(%) ≥ %K ′(%).
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We define also the piecewise constant functions:

∀ω ∈ [0, 1], uh(t, x, ω) = uj,n(ω), vh(t, x, ω) = vj,n(ω), (39)

where t ∈ [n∆t, (n+1)∆t[, x ∈ [xj− 1
2
, xj+ 1

2
[, xj = jh. In this case, we

are in position to establish results similar to those of [21]. We begin
with the positivity-preserving property:

Lemma 4 Assume f0(x, ξ) is nonnegative; then 2∆t ≤ h2 is enough
to ensure that for (34), uh ≥ 0 and vh ≥ 0 with 0 ≤ ε < 3h/4.

Proof Taking (37) into account, the scheme (34) rewrites as follows:

uj,n+1(ω) +
∆t

2εh
(uj,n+1(ω)− Vj,n+1) = uj,n(ω) +

∆t

h
F (ω;Uj−1,n,Vj,n),

vj,n+1(ω) +
∆t

2εh
(vj,n+1(ω)− Uj,n+1) = vj,n(ω)− ∆t

h
F (ω;Uj,n,Vj+1,n).

Hence integrating it and adding yields (35) and the value of Uj,n+1,

Uj,n+1 =
εh

∆t + εh

(
Uj,n +

∆t

h
Kε(Uj−1,n − Vj,n)+

∆t

2εh

(
Uj,n + Vj,n +

∆t

h
Kε(Uj−1,n − Vj,n − Uj,n + Vj+1,n)

))
,

together with the similar one of Vj,n+1:

Vj,n+1 =
εh

∆t + εh

(
Vj,n − ∆t

h
Kε(Uj,n − Vj+1,n)+

∆t

2εh

(
Uj,n + Vj,n +

∆t

h
Kε(Uj−1,n − Vj,n − Uj,n + Vj+1,n)

))
,

We have used Kε =
∫ 1
0

2ω2

h+2εω .dω ≤ 2/3h. Now we insert all this inside
the scheme (34) and rearrange terms. This leads to:

(
1 +

∆t

2εh

)
uj,n+1(ω) =

∆t

∆t + εh

(
Uj,n +

∆t

h
Kε(Uj−1,n − Vj,n)

+
∆t

2εh

(
Uj,n + Vj,n

+
∆t

h
Kε(Uj−1,n − Vj,n − Uj,n + Vj+1,n)

)

+uj,n(ω) +
∆t

h
F (ω;Uj−1,n,Vj,n)

)
.

Inside this expression, we can split between terms in O(1) and O(1/ε);
the expressions involving negative terms read:

Uj,n

(
1− ∆t

h
Kε

(
1 +

εh

∆t

))
,
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and

Vj,n

((
1 +

εh

∆t

)
−

(∆t

h
Kε +

2ω2ε(∆t + ε)
∆t(h + εω)

))
.

It is easy to check that each coefficient is positive under our assump-
tions. Computations for vj,n+1(ω) are similar thus we are done.

Remark 4 From these computations, one can see that a simpler choice
for F , for instance F (ω; u, v) = 2ω2

h+2εω (u(ω)− v(ω)), couldn’t keep
such a property. Hence in §2.4, it wouldn’t have been interesting to
propose ũ(ω) =

∫ 1
0 vR(s).ds + aε(ω)(uL − vR)(ω) just neglecting the

other Maxwellian term (of zero average).

In practice, for ε ' 0, the terms of the order of ε become negligible
and one can of course relax the CFL to 2∆t ≤ 3h2 like in [29].

3.3 Lp(R) and BV (R) regularity; control of the Maxwellian gap

As done before, we define the piecewise constant averages for h ≥ 0:

Uh(t, x) = Uj,n, Vh(t, x) = Vj,n, (40)

where t ∈ [n∆t, (n + 1)∆t[, x ∈ [xj− 1
2
, xj+ 1

2
[.

Lemma 5 Assume 0 ≤ f0(x, ξ) ∈ L∞([−1, 1];L1 ∩ BV (R)); then if
2∆t ≤ h2 in (34), there hold for all 0 ≤ ε < 3h/4, t > 0:

‖Uh(t, .)‖L1(R) + ‖Vh(t, .)‖L1(R) ≤
∥∥∥∥
∫ 1

−1
f0(., ξ).dξ

∥∥∥∥
L1(R)

, (41)

and

TVx

(
Uh(t, .)

)
+ TVx

(
Vh(t, .)

)
≤ TVx

(∫ 1

−1
f0(., ξ).dξ

)
, (42)

where TVx stands for the total variation in the space variable.

The treatment of the nonlinear case (5), (38) is exactly the same;
in particular, there is no need for any linearization of F̃ in U and
V as in [22]. The only change is the explicit dependence of Kε upon
%j− 1

2
,n = 1

2(Uj−1,n + Vj,n), see §4.3.

Lemma 6 Assume 0 ≤ f0(x, ξ) ∈ L∞([−1, 1];L1 ∩ BV (R)); then if
2∆t ≤ h2 in (34), there holds for all 0 ≤ ε < 3h/4, t > 0:

‖Uh(t, .)− Vh(t, .)‖L1(R) ≤ ‖Uh(0, .)− Vh(0, .)‖L1(R)

+O(ε)TVx

(∫ 1
−1 f0(., ξ).dξ

) (43)

where TVx stands for the total variation in the space variable.
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Hence (43) entails control on the distance from the Maxwellian
distribution in the case the initial data is “well-prepared”, that is to
say: ‖Uh(0, .)−Vh(0, .)‖L1(R) of the order of ε. This kind of situation
has already been encountered in [21,22].

Under this assumption and substracting the average in ω of the
second equation in (34) to the first one, we can compute in a similar
way for ω ∈ [0, 1]:

(
uj,n+1(ω)− Vj,n+1

)(
1 +

∆t

2εh

)
= uj,n(ω)− Vj,n +

∆t

2εh

(
Uj,n − Vj,n

)

+
2ω2∆t

h(h + 2εω)

(
Uj−1,n − Vj,n

)
− ∆tKε

h

(
Vj+1,n − Uj,n

)
.

Hence an estimate which somehow gives credit to the simplifications
made in §3.1 is deduced:

∑

j∈Z
h|uj,n(ω)− Vj,n| ≤ ‖Uh(0, .)− Vh(0, .)‖L1(R)+

O(ε)TVx

(∫ 1

−1
f0(., ξ).dξ

)
+

n∏

i=1

(
1 +

∆t

2εh

)−1 ∑

j∈Z
h|uj,0(ω)− Vj,0|.

3.4 Regularity in time and convergence

The basic time regularity result reads:

Lemma 7 Assume 0 ≤ f0(x, ξ) ∈ L∞([−1, 1];L1 ∩ BV (R)); then if
2∆t ≤ h2, there holds for all 0 ≤ ε ≤ 3h/4, t ≥ s ≥ 0:

‖Uh(t, .)− Uh(s, .)‖L1(R) + ‖Vh(t, .)− Vh(s, .)‖L1(R) ≤
O

( |t−s|
εh

)
‖Uh(s, .)− Vh(s, .)‖L1(R) + O(h)TVx

(∫ 1
−1 f0(., ξ).dξ

)

(44)
where TVx stands for the total variation in the space variable.

From Lemmas 7 and 6 follows immediately an Hölder regularity for
Uh, Vh in the case the initial data is well-prepared and h = O(

√
∆t).

Theorem 2 Assume 0 ≤ f0(x, ξ) ∈ L∞([−1, 1];L1 ∩ BV (R)) and
the CFL condition 2∆t ≤ h2; then if the initial datum is such that
‖Uh(0, .)− Vh(0, .)‖L1(R) = O(ε), the sequences Uh, Vh are relatively
compact in L1

loc(R+∗ × R) as h, ε → 0 with ε < 3h/4. Moreover, the
piecewise constant function %h = 1

2(Uh + Vh) converges towards the
unique solution of (3) with the initial datum %(0, .) = 1

2

∫ 1
−1 f0(., ξ).dξ.
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Proof From Lemmas 5, 6, 7, one deduces strong L1
loc compactness by

means of Helly’s theorem. Adding the two equations in (34), one sees
that there holds with obvious notation:

%j,n+1 = %j,n +
∆t

2h
Kε(%j+1,n − 2%j,n + %j−1,n) + (Rε)j,n. (45)

From previous estimates, one sees that ‖Rε(n∆t, .)‖L1(R) = O(ε) and
the consistency with the asymptotic equation (3) is ensured because
Kε → 2/3h as ε → 0.

4 Numerical tests

4.1 The linear heat wave

This first numerical run consists in checking computationally the re-
sults established in §3.2–4, namely the approximation of (3) by (34)
with a particular initial data %0(x) = H(1

2 − x) where H(.) is the
Heaviside function. The exact diffusion wave is given by:

%(t, x) =
1
2


1− erf


x− 1

2√
4
3 t





 .

On the top of Fig.1, we compare the %j,n produced by (34) with this
exact solution for T = 0.07 with u0 = v0 = %0, ε = 2−6, h = 0.02
and ∆t = h2. On the bottom, we display the Maxwellian gap divided
by ε for 20 decreasing values of ε together with the absolute error
between the kinetic approximations and the analytical solution. The
code involves the exact value of Kε:

Kε =
1
2ε
− h

2ε2
+

h2

4ε3
ln

(
1 +

2ε

h

)
.

Looking at the error’s decay, one notices a first regime for which the
main factor is the value of ε (this corresponds to ε ≥ h): the rate of
decay is approximately of order one. This illustrates the fact that, in
(45), the norm of Rε is O(ε) as stated in the proof of Theorem 2. In
the regime for which h > ε, the terms of the order of h dominate and
the error stalls.
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Fig. 1. Results for (34) on (2)–(3) with a Riemann initial datum.

4.2 A variable optical thickness

This second numerical test is devoted to a variant of (2); namely we
want to consider a very simple production term and a variable optical
thickness within a boundary-value problem as in [29],

ε∂tf + ξ∂xf =
σ(x)

ε

(
1
2

∫ 1

−1
f.dξ − f

)
+ ε, x ∈ [0, 1], (46)

with Maxwellian initial conditions f0 ≡ 0 and v(t, x = 1, ω) =
u(t, x = 0, ω) = 0 for all ω ∈ [0, 1] and t > 0. The asymptotic
behaviour of (46) as ε → 0 is given by the slightly different diffusion
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Fig. 2. Results in T = 1.35 for (46) with f0 ≡ 0.

equation:

∂t%− 1
3
∂x

(
∂x%

σ(x)

)
= 1, %(t, 0) = %(t, 1) = 0, t > 0. (47)

In our computations, we selected σ(x) = 1 + 10x2 together with
h = 0.02, ∆t = 0.0003 and both schemes (18), in the setting proposed
in Remark 2, and (34) in order to produce the results displayed in
Fig.2. We used 20 values for ε between 1 and 2−20 and passed from
(18) to (34) as soon as ε < h‖σ‖L∞ . We also computed directly the
solution to (47) by a standard finite-difference scheme for comparison,
indexed by “diffusive” on the top picture. On the bottom picture,
we observe that the remaining terms Rε separating this asymptotic
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solution from the kinetic one are of order ε2/3 for moderate values.
The Maxwellian gap keeps on being O(ε) for every considered value
ε. It turns out that despite the fact the following scheme remains
stable for ∆t ≤ εh,




u j,n+1(ω) = uj,n(ω) + ∆t− ω∆t

εh

{(
uj,n(ω)− uj−1,n(ω)

)

+
(
1− e

−hσ(x
j− 1

2
)/εω

)(
uj−1,n(ω)− 1

2

∫ 1

0

˜uj−1,n + vj,n(s).ds
)}

,

v j,n+1(ω) = vj,n(ω) + ∆t +
ω∆t

εh

{(
vj+1,n(ω)− vj,n(ω)

)

−
(
1− e

−hσ(x
j+1

2
)/εω

)(
vj+1,n(ω)− 1

2

∫ 1

0

˜uj,n + vj+1,n(s).ds
)}

,

its performances decay strongly for ε < 10h because of an exces-
sive numerical dissipation, see top picture in Fig.2 for ε = 0.125.
A 7-points Gaussian quadrature rule has been used to compute the
modified velocity averages inside the aforementioned scheme.

4.3 The porous medium equation

At last, we simulated the so-called Barenblatt’s solution of the porous
medium equation corresponding to (6) with K(%) = 1/6%. We used
the schemes (18)–(34) with the modified numerical fluxes (16)–(38)
proposed in Remarks 1 and 3; the parameters were h = 0.15, ∆t =
0.01 and an approximation for Kε(%) ' 2%

(
2−3ε

h

)
. The picture on top

of Fig.3 displays the numerical outcome at time T = 3 in the case
ε = 1 and ε = 2−9 respectively. One observes a good convergence de-
spite the singularities on both sides of the solution. We switched from
(18) to (34) for ε < h/3. This is noticeable if looking at the absolute
errors’ decay on the bottom picture. In the rarefied regime, the ki-
netic densities remain far from the Maxwelian distribution. When the
diffusive scheme is used, a O(ε2/3) decay is observed as in Figure 1 for
moderate values of ε. For ε ¿ h, the error stalls. Concerning the re-
laxation mechanism, one can observe that for ε < 0.05 the Maxwellian
ratio is still of the order of ε since we took f0(t = 0, x, ξ) = %(t = 0, x)
for all ξ. The exact solution reads for t ≥ 0:

%(t, x) =
1

r(t)

(
1−

(
x

r(t)

)2
)
1|x|≤r(t), r(t) = (12(1 + t))

1
3 .

Its “two-stream approximation” is the model studied in [22], §4.1.
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Fig. 3. Results for (18)–(34) on (5)–(6) with Barenblatt’s solution.

5 Conclusion

In this paper, we applied the nowadays classical Well-Balanced ap-
proach to a simple model of radiative transfer equations (2) on the
whole range of parameters ε ∈ [0, 1]. In contrast with [21], some
new features appeared within the numerical processing of (4): first,
the function aε(ω) which plays a key role when establishing the mass
conservation property in the rarefied regime (Lemmas 1–2) and later,
when splitting ũ(ω), ṽ(ω) between Maxwellian and diffusive parts in
the diffusive scaling. Second, it turned out that in order to preserve
the properties (10)–(12), this Maxwellian term musts involve both
uL(ω) and vR(ω). Hence it became necessary to “cut” some terms



24 Laurent Gosse and Giuseppe Toscani

and make some assumptions inside this decomposition to produce a
scheme like (34) which is as computationally expensive as the one in
[21] and for which all the stability and asymptotic properties can be
proved in the limit ε → 0, see Lemmas 4–7.

Acknowledgements Part of this work has been conducted during the time the
first author was hosted by University of Pavia whose hospitality is gratefully
acknowledged.

Appendix: Technical proofs

Proof of Theorem 1

As a consequence of Lax’s equivalence theorem, we have to establish
stability and consistency for (18) as h → 0 with ε > 0 fixed under
the CFL assumption ∆t ≤ εh.

– Stability: We start from (21); summing on j ∈ Z, we get for all
ω ∈ [0, 1]:

∑

j∈Z
h(|uj,n+1|+ |vj,n+1|)(ω) ≤

∑

j∈Z
h(|uj,n|+ |vj,n|)(ω)+

∆taε(ω)
ε2

∑

j∈Z
h
{∫ 1

h/ε
|uj,n|+ |vj,n|(s).ds−Θω(

h

2ε
)(|uj,n|+ |vj,n|)(ω)

}
.

We take the supremum over ω ∈ [0, 1] on both sides. Since the
integral term is a convex combination, we claim that the second
part of this inequality’s right-hand side is negative for h small
enough. This yields:

sup
ω∈[0,1]

{∑

j∈Z
h(|uj,n+1|+|vj,n+1|)(ω)

}
≤ sup

ω∈[0,1]

{∑

j∈Z
h(|uj,n|+|vj,n|)(ω)

}
.

By linearity of (18), the same procedure can be applied to derive
a bound on the total variation in the x variable. The piecewise
constant functions (22) satisfy therefore for all time t ∈ R+ :

uh(t, ., .), vh(t, ., .) ∈ L∞([0, 1];L1 ∩BV (R)).

This allows to derive some regularity in the time variable; namely,

sup
ω∈[0,1]

{∑

j∈Z
h(|uj,n+1−uj,n|+|vj,n+1−vj,n|)(ω)

}
≤ ∆t sup

ξ∈[−1,1]
TVx(f0(x, ξ)).

Hence uh, vh ∈ L∞([0, 1];BVloc(R+∗ × R)) uniformly in h ≥ 0.
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– Consistency: We rewrite the first equation of (18) as follows (the
second one is treated exactly the same way) for any ω ∈ [0, 1]:

uj,n+1(ω)− uj,n(ω)
∆t

+
ω

ε

uj,n(ω)− uj−1,n(ω)
h

=

aε(ω)
ε2

(
1
2

∫ 1

h/ε
uj−1,n + vj,n(s).ds−Θω(

h

2ε
)uj−1,n(ω)

)
.

The left part of this equation can be shown to be consistent in a
very classical way. To carry out the other, one notices that by their
very definition, aε(ω) → 1 (see Lemma 1) and Θω(h/2ε) → 1 as
h → 0. Thus the interval of integration is correct and the modified
averages boil down to arithmetic ones in the limit. Moreover, by
space regularity, the integral term converges to the right one.

Finally, uh, vh converge towards a weak solution of the system




∂tu +
ω

ε
∂xu =

1
ε2

(∫ 1

0
(u + v)(ω′).dω′ − u

)
,

∂tv − ω

ε
∂xv =

1
ε2

(∫ 1

0
(u + v)(ω′).dω′ − v

)
,

whose initial data is deduced from f0. By uniqueness, all the sequence
converges.

Proof of the equality (36)

The calculation goes as follows:

Zε −W ε = ∆t

∫ 1

0

1
2εh + ∆t

− 2ω2

εh + ω∆t
.dω

= ∆t

∫ 1

0

εh + ω∆t− 2ω2(2εh + ∆t)
(2εh + ∆t)(εh + ω∆t)

= ∆t
{∫ 1

0

(1− 2ω)2ωεh

(2εh + ∆t)(εh + ω∆t)
.dω +

∫ 1

0

1− 2ω

2εh + ∆t
.dω

}
.

It remains to observe that the last integral is zero and to take the
modulus.

Proof of Lemma 5

Relying on the positivity of the incremental coefficients established
in the proof of Lemma 4, we can take the moduli inside the schemes
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on Uj,n, Vj,n. This leads to:
(

1 +
∆t

εh

)(
|Uj,n+1|+ |Vj,n+1|

)
≤ Cε

(
|Uj,n|+ |Vj,n|

)

+Dε

(
|Uj−1,n|+ |Vj+1,n|

)
.

We have:

Cε = 1 +
∆t

2εh

(
1− ∆t

h
Kε

)
− ∆t

h
Kε,

Dε =
∆t

2εh

(
1 +

∆t

h
Kε

)
+

∆t

h
Kε.

Hence one checks readily that Cε + Dε = 1 + ∆t
εh . This is enough for

(41). The linearity of the scheme ensures that (42) follows too.

Proof of Lemma 6

We compute the difference of the schemes on Uj,n, Vj,n:
(

1 +
∆t

εh

)(
Uj,n+1 − Vj,n+1

)
=

(
1 +

2∆tKε

h

) (
Uj,n − Vj,n

)

+
∆tKε

h

(
Uj−1,n − Uj,n

)

−∆tKε

h

(
Vj+1,n − Vj,n

)
.

Taking the modulus, summing and taking advantage of the TVD
property (cf. Lemma 5) leads to

‖Uh(t, .)− Vh(t, .)‖L1(R) ≤ αn‖Uh(0, .)− Vh(0, .)‖L1(R)

+ 2ε
3(1−α)TVx

(∫ 1
−1 f0(., ξ).dξ

)
,

for some convenient n ∈ N and

α =
1 + 2∆tKε

h

1 + ∆t
εh

.

Then, one notices that

ε <
3h

4
⇒ α < 1,

and (43) follows.
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Proof of Lemma 7

We add the two equations in (34) and integrate in ω ∈ [0, 1]:



Uj,n+1 − Uj,n = − ∆t

2εh
(Uj,n+1 − Vj,n+1)− ∆tKε

h
(Vj,n − Uj−1,n)

Vj,n+1 − Vj,n =
∆t

2εh
(Uj,n+1 − Vj,n+1)− ∆tKε

h
(Uj,n − Vj+1,n)

Adding and subtracting ∆t
2εh(Uj,n−Vj,n) in both members of the first

equation leads to:
(

1 +
∆t

2εh

)
(Uj,n+1 − Uj,n)− ∆t

2εh
(Vj,n+1 − Vj,n) =

(
∆tKε

h
− ∆t

2εh

)
(Uj,n − Vj,n)− ∆tKε

h
(Uj,n − Uj−1,n).

Adding and subtracting the same quantity in the second equality
yields a similar expression. At this level, one can take the modulus
and add both equations to obtain:

|Uj,n+1 − Uj,n|+ |Vj,n+1 − Vj,n| ≤ ∆t

h

∣∣∣∣
1
ε
− 2Kε

∣∣∣∣ |Uj,n − Vj,n|

+
∆tKε

h

{
|Uj,n − Uj−1,n|+ |Vj+1,n − Vj,n|

}
.

All the terms appearing can be controlled by means of Lemmas 5 and
6 since ∆tKε/h = O(1); this yields the case where t = (n + 1)∆t,
s = ∆t. Extension to the general case is straightforward.

References

1. D. Amadori, L. Gosse, G. Guerra, Global BV entropy solutions and uniqueness
for hyperbolic systems of balance laws, Arch. Rational Mech. Anal. 162 (2002)
327-366.

2. D. Amadori, L. Gosse, G. Guerra, Godunov-type approximation for a general
resonant balance law with large data, to appear in J. Diff. Eq.

3. D. Aregba-Driollet, R. Natalini, S.Q. Tang, Diffusive kinetic explicit schemes
for nonlinear degenerate parabolic systems, Math. Comp. (to appear)

4. G. Bal, G. Papanicolaou and L. Ryzhik, Radiative transport limit for the ran-
dom Schroedinger equation, Nonlinearity 15 (2002) 513–529.

5. C. Bardos, F. Golse, B. Perthame, R. Sentis, The Nonaccretive Radiative
Transfer Equation: Global Existence and Rosseland Approximation, J. of Funct.
Anal. 77 (1988) 434–460.

6. R. Botschorijvili, B. Perthame, A. Vasseur, Equilibrium schemes for scalar
conservation laws with stiff source terms, Math. Comp. 72 (2003), 131–157.



28 Laurent Gosse and Giuseppe Toscani

7. T.A. Brunner & J.P. Holloway, One-dimensional Riemann solvers and the
maximum entropy closure, Journal of Quantitative Spectroscopy and Radiative
Transfer 69 543–566.

8. C. Buet, S. Cordier, B. Lucquin-Desreux, S. Mancini, Diffusion limits of the
Lorentz model: Asymptotic preserving schemes, Math. Model. Anal. Num. 36
(2002), 631–655.

9. R.E. Caflisch, S. Jin and G. Russo, Uniformly Accurate Schemes for Hyperbolic
Systems with Relaxations, SIAM J. Numerical Analysis 34 (1997) 246-281.
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